I like heatplots with p-values -or frequencies, or whatever-. Not very conclusive, but pretty anyway. And when talking about graphs, pretty will make our neurons to fire in more interesting ways: neurons like “pretty” graphs. Moreover, observing your data can be as important as analysing it. It’s better to observe, to listen your patients than making tests without knowing very much about them…

In the heatmaps of the previous post, not a lot of information can be included. Maybe could be useful to write in the tiles the actual p-values, the residuals, or the odds ratios (OR) of the significant crossings (take a look at this solution with ggplot2)…

But one little tweak can be done to make a more informative plot:

different color scales for crossed factors with OR less than 1 (cold), and other scale for ORs more than 1 (hot).


To start, we’ll use the same pevious database:

library(plyr)
library(ggplot2)
library(scales)
library(reshape)
gender <- c(
"1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1",
"2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "2", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1",
"1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "2", "1", "1", "2", "2", "2", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "2", "2", "2", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2",
"2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "2", "2", "1", "1",
"1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "2", "2",
"1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "1", "2", "2", "1", "2", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "2", "2", "1", "2", "2", "2", "2", "1", "2", "1", "1", "2")

var2 <- c(
"0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0")

var3 <- c(
"0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "0", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0",
"0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0",
"1", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0")

var4 <- c(
"0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1",
"1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0",
"0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "1", "1",
"1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "1", "0", "1",
"0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1",
"1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1",
"0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "1",
"1", "1", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0")

var5 <- c(
"0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0",
"1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1",
"0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "1",
"0", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0",
"0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1",
"1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1",
"1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0")

var6 <- c(
"1", "1", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "0", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "1", "1", "0", "0", "0", "0", "1", "0", "0", "0",
"1", "1", "1", "1", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0")

corfac <- data.frame(gender,var2,var3,var4,var5,var6)
summary(corfac)
    gender  var2    var3    var4    var5    var6   
    1:277   0:312   0:321   0:201   0:236   0:197  
    2:121   1: 86   1: 77   1:197   1:162   1:201
head(corfac) # see the first rows of the data matrix
     gender var2 var3 var4 var5 var6
   1      1    0    0    0    0    1
   2      2    1    0    1    1    1
   3      1    0    0    0    1    0
   4      2    0    0    0    0    0
   5      1    0    0    0    0    1
   6      1    0    1    0    1    1
class(corfac)
   [1] "data.frame"

Then, we will make the same “square” template:

combos <- expand.grid(rep(list(1:ncol(corfac)), 2 )) # combinations with repetitions
combos <- as.matrix(combos)
combos <- t(combos) # transpose matrix

Now, the code to fill the template will change, to include a column named OR:

mat1 <- adply(combos, 2, function(x) {
test <- chisq.test(corfac[, x[1]], corfac[, x[2]])
.Table <- xtabs(~ corfac[, x[1]] + corfac[, x[2]], data=corfac)
Odds.r <- (.Table[1]/.Table[3])/(.Table[2]/.Table[4])
out <- data.frame("Row" = colnames(corfac)[x[1]]
, "Column" = colnames(corfac[x[2]])
, "Chi.Square" = round(test$statistic,8)
, "df" = test$parameter
, "p.value" = round(test$p.value, 3)
, "OR" = Odds.r
)
return(out)
})
head(mat1)
     X1    Row Column   Chi.Square df p.value        OR
   1  1 gender gender 393.28795074  1   0.000       Inf
   2  2   var2 gender   7.94477890  1   0.005 0.4105767
   3  3   var3 gender   0.09049022  1   0.764 1.1268029
   4  4   var4 gender   0.32310997  1   0.570 1.1591611
   5  5   var5 gender   0.02776728  1   0.868 0.9401586
   6  6   var6 gender   0.00729802  1   0.932 1.0432874

We have a matrix with all the crossings. We have also information about the OR value for each association. How can we translate this to colors?. Because in the final matrix only p-values will be allowed, I thought of signs in p-values to be the markers. The crossings with ORs < 1, would have p-values with a minus sign.

I have not been able to complete this steps in a better way. Maybe my code should be improved, but it works:

  • First of all, we create a “dummy factor” (mat1$or.sign) with strings corresponding to the future signs in the p-values. At the same time, we’ll be able to get rid of all the NAs that surely appeared in the matrix, in the OR column (not in this case, fortunately).

    mat1$or.sign[mat1$OR < 1] <- "neg"
    mat1$or.sign[mat1$OR >= 1] <- "pos"
    mat1$or.sign[is.na(mat1$or.sign)] <- "pos" # solves problem of OR = NA
    summary(mat1)
              X1         Row       Column    Chi.Square             df   
        1      : 1   gender:6   gender:6   Min.   :  0.0073   Min.   :1  
        2      : 1   var2  :6   var2  :6   1st Qu.:  0.1374   1st Qu.:1  
        3      : 1   var3  :6   var3  :6   Median :  4.3419   Median :1  
        4      : 1   var4  :6   var4  :6   Mean   : 75.1401   Mean   :1  
        5      : 1   var5  :6   var5  :6   3rd Qu.: 31.9211   3rd Qu.:1  
        6      : 1   var6  :6   var6  :6   Max.   :394.0096   Max.   :1  
        (Other):30                                                       
           p.value             OR           or.sign         
        Min.   :0.0000   Min.   :0.4106   Length:36         
        1st Qu.:0.0000   1st Qu.:1.1296   Class :character  
        Median :0.1975   Median :1.2557   Mode  :character  
        Mean   :0.3342   Mean   :   Inf                     
        3rd Qu.:0.7110   3rd Qu.:3.3707                     
        Max.   :0.9320   Max.   :   Inf                     
    
    head(mat1)
         X1    Row Column   Chi.Square df p.value        OR or.sign
       1  1 gender gender 393.28795074  1   0.000       Inf     pos
       2  2   var2 gender   7.94477890  1   0.005 0.4105767     neg
       3  3   var3 gender   0.09049022  1   0.764 1.1268029     pos
       4  4   var4 gender   0.32310997  1   0.570 1.1591611     pos
       5  5   var5 gender   0.02776728  1   0.868 0.9401586     neg
       6  6   var6 gender   0.00729802  1   0.932 1.0432874     pos
  • Second, all p-values = 0 are a problem here (no signs can be added). We will transform zeroes to very little numbers, like:

    mat1$p.value[mat1$p.value==0] <- 0.00001
  • We will create a column that contains all the p-values, but with negative sign:

    mat1$p.value.neg <- mat1$p.value - 2*mat1$p.value
  • After that, we can create the “definitive” p-value column, where the sign corresponds to the value in “mat1$or.sign”. If you get any errors, you can pass the same commands again…

    mat1$p.value.sign[which(mat1$or.sign=="pos")] <- mat1$p.value[which(mat1$or.sign=="pos")]
    mat1$p.value.sign[which(mat1$or.sign=="neg")] <- mat1$p.value.neg[which(mat1$or.sign=="neg")]
  • Now the data is almost ready!

In ggplot2

  • Just a ggplot2 example…

    library(scales)
    
    q <- ggplot(mat1, aes(Row, Column, fill = p.value.sign)) +
    geom_tile(colour="gray80") +
    theme_bw(10) +
    xlab("Factors") + ylab("Factors") +
    scale_fill_gradient2(low = muted("darkblue"), mid = "white", high = muted("red"),
    midpoint = 0, space = "Lab", na.value = "grey10", guide = "colourbar", limits=c(-0.049, 0.049))
    q + theme(axis.text.x = element_text(angle = 90, hjust = 1))

Clustered heatmap with gplots:

And below is my favourite representation because of the clustering and the great result/readability with simple colors (I don’t find easy to distinguish very small changes in tone/hue, or I need another screen).

  • First, we have to reshape the data:

    matz <- mat1[,c(2,3,10)]
    head(matz)
            Row Column p.value.sign
       1 gender gender      0.00001
       2   var2 gender     -0.00500
       3   var3 gender      0.76400
       4   var4 gender      0.57000
       5   var5 gender     -0.86800
       6   var6 gender      0.93200
    mat2df <- cast(matz, Row~Column)
    mat2 <- as.matrix(mat2df)
    head(mat2)
                gender     var2    var3    var4     var5    var6
       gender  0.00001 -0.00500 0.76400 0.57000 -0.86800 0.93200
       var2   -0.00500  0.00001 0.79000 0.47500  0.71100 0.00300
       var3    0.76400  0.79000 0.00001 0.39000  0.00100 0.50700
       var4    0.57000  0.47500 0.39000 0.00001  0.00001 0.00001
       var5   -0.86800  0.71100 0.00100 0.00001  0.00001 0.00001
       var6    0.93200  0.00300 0.50700 0.00001  0.00001 0.00001
  • And then, we plot:

    library(gplots)
    
    myCol <- c("gray15", "gray25", "blue", "green", "yellow", "orange", "gray25", "gray15")
    # Defining breaks for the color scale
    myBreaks <- c(-1, -0.06, -0.05, -0.001, 0, 0.001, 0.05, 0.06, 1)
    # pdf("result_heatmap.pdf", width = 30, height = 30)
    
    hm <- heatmap.2(mat2, scale="none", Rowv=T, Colv=T,
    col = myCol, ## using your colors
    breaks = myBreaks, ## using your breaks
    #                 dendrogram = "none",  ## to suppress warnings
    margins=c(8,8), cexRow=0.8, cexCol=0.8, key=FALSE, keysize=1.5,
    trace="none")
    legend("topleft", fill = myCol, cex=0.6,
    legend = c(">0.6", "0.6 to 0.05", "0.049 to 0.001 (OR <1)", "0.001 to 0 (OR <1)", "0 to 0.001 (OR >1)", "0.001 to 0.049 (OR >1)", "0.05 to 0.6", ">0.6"))